
TECHNICAL PAPER

January/February 2016	 SMPTE Motion Imaging Journal // 1

UMID Applications in MXF and Streaming Media
By Yoshiaki Shibata

This paper reports on work in the SMPTE standards community to
enhance applications of the Unique Material Identifier (UMID) in the
material exchange format (MXF) technology. While the latest SMPTE
RP 205 specifying the UMID Application Principles was published at
the end of 2014, the UMID Resolution Protocol is still under stan-
dardization. This paper demonstrates how various kinds of UMIDs
in an MXF file are to be utilized to enable various UMID applications
based on the UMID Application Principles. Furthermore, thanks to a
type of UMID attached to every frame in an MXF file, there is a way
for the UMID to be employed consistently and seamlessly between the
worlds of an MXF file and a media stream composed of a sequence of
frames. Some guidelines are proposed to maximize the interoperability
of UMID applications in MXF and streaming media.

Keywords: UMID, Basic UMID, Extended UMID; UMID Applica-
tion Principles, UMID Resolution Protocol, MXF, MXF Package
UID, MXF Material Package, MXF File Package, MXF Generic
Container

INTRODUCTION
The unique material identifier (UMID) is a globally unique audio-
visual material identifier standardized by the SMPTE as SMPTE
ST 3301 and RP 205.2 It is based on the recommendations of
the European Broadcasting Union (EBU)/SMPTE Task Force for
Harmonized Standards for the Exchange of Programme Material
as Bitstreams, which addresses the file-based media production
workflow we have today.3 It was initially standardized by SMPTE
in 2000 prior to the recommendation-based standardization of the
material exchange format (MXF) in 2004.4

While the UMID itself is independent of any material format or
packaging, it was a natural consequence from its origin that the
UMID was adopted as a mandatory component in an MXF file to
uniquely identify it as a material. Thus, as MXF has gained an ev-
er-increasing role within file-based workflows, the UMID has also
become more widely used within the media and entertainment
(M&E) industry.

Contrary to the original intent upon its introduction, the UMID
has been substantially useless in practice. Even the most antici-
pated use of the UMID as a globally unique material identifier to
associate material with its external metadata has seldom been seen
thus far.

In 2011, we pointed out5 that this was because of a lack of UMID
Application Principles and a UMID Resolution Protocol, which
needed standardization. To address this issue, the SMPTE UMID
Application Project6 was established in April 2012.

At the time of this writing, the project has successfully standard-
ized the UMID Application Principles (UAPs), the fundamental
rules for UMID to be treated in a reliable and consistent way over
media products from multiple vendors. These were published as
SMPTE RP 2052 at the end of 2014, while the UMID Resolution
Protocol, a standard method for converting a UMID into the cor-
responding uniform resource locator (URL) for material uniquely
identified by that UMID, is still in the process of standardization
in SMPTE.

Although both the UAPs and the UMID Resolution Protocol are, by
nature, agnostic to the format of a media file, the origins of MXF
and UMID described above make it natural to expect that MXF files
can take full advantage of the UMID applications compared with
media files in other file formats.

This paper explores how the UMID in an MXF file can be proac-
tively utilized to enable various UMID applications, including ap-
plications in a media stream resulting from the playout of the MXF
file. This work can also be seen as a trial on how UAPs are to be
embodied specifically in the context of MXF and media streaming.

This has been another major focus of the UMID Application Proj-
ect. An intensive study was conducted and an internal report was
submitted to SMPTE Technology Committee (TC) Metadata and
Registers (30MR). In order to seek a wide range of feedback from
M&E industry experts, a report titled “Study of UMID Applications
in MXF and Streaming Media” was created from the internal report
and made publically available as a SMPTE Standard Committee Re-
port.7 This paper provides the digest version of that report. Those
interested in and desiring further study on this topic are invited to
review the original Standard Committee Report.

UMID APPLICATION BASICS

UMID Format
An introduction to UMID application basics starts with the UMID
format. The UMID is a byte string of either 32 or 64 bytes, which
are called basic UMID and extended UMID, respectively. The ex-

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

UMID Applications in MXF and Streaming Media continued

2 // SMPTE Motion Imaging Journal	 January/February 2016

tended UMID is composed of two parts: the 32 byte basic UMID
(called “basic part”) and the 32 byte source pack, which imme-
diately follows the basic part, as shown in Fig. 1. The UMID is
used either as the 32 byte basic UMID on its own or as the 64 byte
extended UMID.

Figure 2 shows the basic UMID format, which is composed of the
following four fields:

(1) SMPTE universal label (UL): The first 12 bytes of the basic
UMID constitute the SMPTE UL registered to the SMPTE Metadata
Dictionary8 for the UMID. The first 10 bytes are fixed values, and
the 11th byte indicates the type of material identified by the UMID.
The 12th byte is divided into top and bottom nibbles, and it is
used to indicate the number generation methods for the material
number and instance number, respectively. The bottom nibble is
also used to signal the “live stream”; i.e., when specified as “F

h
,” it

indicates that the material attached with this UMID is a direct live
signal source from a material creation device, implying that it is
non-persistent and thus cannot be uniquely identified.

(2) Length (L): This 1 byte field specifies the length of the byte
string that follows. Since 19 bytes follow in the case of basic UMID,
this field is fixed to 13

h
, while it is 33

h
 for the extended UMID be-

cause of the additional 32 byte source pack that follows.

(3) Instance number (Inst.#): This 3 byte field specifies whether the
material number is a newly created value or the inherited one from
another UMID existing elsewhere. For a newly created UMID, this
field must be zero-filled (00

h
 00

h
 00

h
), indicating that the Mat.# is

a newly created value.

(4) Material number (Mat.#): This 16 byte field accommodates a
globally unique value at its generation, which makes the newly cre-
ated UMID a globally unique material identifier. An example of
such a value generation is given by a combination of the network
node number of a device creating material and the time stamp at
which the material is created. Because the network node number is
globally unique, material with a UMID in this combination can also
be globally uniquely identified when only a single material item is
created at one time.

When a quantum duration of material such as a frame needs to be
further uniquely identified within a material, the source pack is
appended to the basic UMID, which forms the extended UMID, as
shown in Fig. 1. Here, the quantum duration to be uniquely identi-
fied by the extended UMID is called material unit. Figure 3 shows
the extended UMID format, where the source pack is composed of
the following three fields:

(1) “When” field (date/time): This 8 byte field specifies the date and
time stamp at which a material unit was initially created. Because
the timing granularity for this field is smaller than the cyclic period
of material units, each material unit is distinguished with the value
for this field.

(2) “Where” field (alt./lat./long.): This 12 byte field specifies the
spatial coordinate information associated with the location at
which a material unit was initially created. This field is further de-
composed into three parts: altitude, latitude and longitude, each of
which is 4 bytes long.

(3) “Who” field (user info): This 12 byte field specifies who initially
created a material unit. This field is further decomposed into three
parts: country, organization, and user code, each of which is 4 bytes
long.

Double-Layered Material Identifications by UMIDs
Figure 4 schematically illustrates how the basic UMID and the ex-
tended UMID are utilized to uniquely identify material as a bound-
ed sequence of frames and an individual frame in the material as a
material unit, respectively.

As shown in the figure, the material is uniquely identified by the
basic UMID, “U

1
,” being attached to all frames in the material. This

UMID implementation is helpful especially for a linear recording
device such as video tape recorder (VTR) because of its capability
to access only a part of the material such as a frame at a certain
point of time.

Extended UMID (total 64 Bytes)

Source Pack (32 Bytes) Basic UMID (32 Bytes)

Figure 1. Top-level structure of UMID.

Figure 2. Basic UMID format.

UL Mat.#

12 bytes 16 bytes 1 byte 3 bytes

L Inst.#

32 bytes

Figure 3. Extended UMID format.

8 bytes

Extended UMID (total 64 Bytes)

Source Pack (32 Bytes) Basic UMID (32 Bytes)

Date/Time Alt./Lat./Long. User Info.

12 bytes 12 bytes

Where Who

User code

4 bytes

Org.

4 bytes

Country

4 bytes

When

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

January/February 2016	 SMPTE Motion Imaging Journal // 3

An individual frame in the material (as a material unit) is distin-
guished by the source pack, “S

i
” (i = 1 − n), which immediately fol-

lows the basic UMID as the basic part to form the extended UMID.
Thanks to a finer granularity than the reciprocal of the frame rate
for the “When” field, the source pack varies at every frame, and,
therefore, the extended UMID, composed of the basic part uniquely
identifying the material as a whole and the source pack distinguish-
ing each frame in the material, can uniquely identify an individual
frame in the material.

Note that while the original intention of the extended UMID was
to identify an individual material unit that comprises the material,
it also accommodates fundamental information about the creation
of each material unit, which is preserved throughout the processes
of the media production workflow chain.

Two Distinct Uses of UMID
The primary use of a UMID is as a globally unique material identi-
fier. When new material is created from scratch by, for example,
the camera acquisition, a new UMID is created and attached to the
material automatically, so that it can be globally uniquely identified
by the UMID value. In this case, while the Mat.# for the UMID is
a newly created globally unique value (e.g., “FE

h
 DC

h
 BA

h
 ... 32

h

10
h
”), the Inst.# must be zero-filled (“00

h
 00

h
 00

h
”) as show in Fig.

5 (a) to indicate that it is original material with a newly created
Mat.# value.

Another use of a UMID is as a linking tool. When material is cre-
ated from existing source material by, for example, partial retrieval,
a UMID, for which the Mat.# is inherited from that of the source
material while the Inst.# is set to a nonzero value, is attached to a
resulting derived material.

Figure 5 (b) shows the case where the Mat.# value of an original
material as a source, or “FE

h
 DC

h
 BA

h
 ... 32

h
 10

h
,” is inherited, and

a new nonzero value, or “01
h
 98

h
 76

h
,” is created to form a UMID

to be attached to the resulting derived material. Consequently, the
resulting material is logically associated with its source material via
their Mat.#; in other words, the UMID globally uniquely identify-
ing its source material is easily obtained by just masking the Inst.#
of the UMID of the resulting material to zero.

It should be noted that while there are two uses of UMID as de-
scribed above, those two uses are completely exclusive. If a UMID
is used as a linking tool as shown in Fig. 5 (b), it cannot be used as a
globally unique material identifier for which the global uniqueness
is always guaranteed, because the value space of the 3 byte Inst.# is
far from sufficient to accommodate a globally unique value.

This leads to a conclusion that when the material at hand has a
UMID with a nonzero Inst.#, the material is not original materi-
al but derived material for which the source material is globally
uniquely identified by the UMID with its Inst.# masked to zero.

UMID as a Globally Unique Material Identifier
When a UMID is used as a globally unique material identifier, the
most important role of the UMID is to unambiguously associate
the material with metadata describing the material. Assuming an
MXF file and an extensible markup language (XML) file are given
as the material and its associated metadata, respectively, Figure 6
schematically illustrates how they are associated via UMID.

In Fig. 6, the MXF files, “Material-1.mxf” and “Material-2.mxf,”
represent certain materials that are globally uniquely identified by
the UMID “U

A
” and “U

B
,” respectively. As will be discussed later, an

MXF file has a field for the basic UMID in its file header. As a result,
“Material-1.mxf” containing the UMID “U

A
” value at its header is

to be globally uniquely identified by the UMID “U
A
.”

When metadata associated with the material are given, they need to
unambiguously specify the material they are associated with, and

Figure 4. Double layered material identifications by Basic and Extended
UMIDs.

Figure 5. Two distinct uses of UMID. (a) As a globally unique material identifier (left). (b) As a linking tool (right).

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

UMID Applications in MXF and Streaming Media continued

4 // SMPTE Motion Imaging Journal	 January/February 2016

it is the UMID that works as a hook to hang the metadata. In the
case of Fig. 6, “Metadata-1.xml” describing “Ichiro Homerun” for
its title is associated with “Material-1.mxf” via the UMID “U

A
” as

represented by the value of the umidRef attribute of the TargetMa-
terial element in “Metadata-1.xml.”

Note that such an association has been conventionally implement-
ed by using a URL such as “http://server.example.com/materials/
Material-1.mxf,” which directly indicates where the material as an
MXF file is located. The use of UMID, on the other hand, is re-
garded as an indirect logical way to create the association, which
brings a benefit of much higher flexibility than the URL-based one,
though some additional tools are required for the UMID-based as-
sociation to work in practice, as discussed in the next subsection.

UMID-Based Material Search and UMID Resolution Protocol
One of the primary roles of metadata is its use for material search.
Because of the huge difference in data sizes between material and

its associated metadata, it is reasonable and in common practice for
the metadata to be stored separately from the material.

Based on the association between material and its metadata via
UMID, an application scenario, called UMID-based material search,
is schematically demonstrated in Fig. 7, where materials are stored
in various kinds of material servers (“Ingest Server,” “Near-Line
Material Server,” “Archive,” and “Playout Server”) connected to the
network in a media production system, and all the metadata asso-
ciated with materials via respective UMID are collected and sepa-
rately stored together in a dedicated metadata database (“Metadata
Database”) for their uniform management.

In this scenario, when an external application (“Application”),
such as video editing, desires to obtain a material item that cap-
tures an “Ichiro Homerun” scene, for example, it will submit a
query to the metadata database accordingly. The metadata database
will then reply to the application with the desired material by its
UMID.

Figure 6. Material associated with metadata via UMID.

Figure 7. UMID based material search.

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

January/February 2016	 SMPTE Motion Imaging Journal // 5

Because the UMID itself cannot tell anything about where to access
the desired material, the application needs to resolve the UMID—
to convert the UMID into its corresponding URL. In this scenario,
the application distributes a query asking “Where is ‘UMID = U

A
’

material?” to the material servers, and the ingest server (“Ingest
Server”) storing the desired material responds with the URL for the
material, which is to be used by the application to actually access it.

Note that, in this application scenario, because each material server
would come from a different vendor, the UMID Resolution Pro-
tocol, or the conversation method between the application and
the material servers for the UMID resolution, needs to be industry
standardized, which is the issue on which the UMID Application
Project is working intensively at the time of this writing.

UMID Application Principles (UAPs)
In addition, the application scenario shown in Fig. 7 implicitly
assumes that all the materials stored in any material server are
appropriately managed by using their UMIDs as globally unique
material identifiers. However, what does it mean by “materials are
appropriately managed by using their UMIDs”?

To answer this question, it is essential to clearly define the UAPs,
the fundamental rules for the UMID to be treated in a reliable and
consistent way over the media products from multiple vendors,
which constitute the basis of any UMID applications.

Based on the analysis of several existing and future-envisaged
UMID applications, the UMID Application Project successfully
distilled the UAPs, which were then industry standardized in the
latest SMPTE RP 205.2

In the following, UAPs composed of seven principles are briefly
introduced so that they can serve as a basis for discussion on UMID
applications in MXF and streaming media.

■	 Principle 1: Definitions

	 This principle defines the terms used in the statements that fol-
low, including a strict definition of “material” (the original mate-
rial with UMID of newly created Mat.# and zero Inst.# values)
and “instance” (the derived material with UMID of inherited
Mat.# and nonzero Inst.# values).

■	 Principle 2: UMID Creation

	 This principle specifies when new material is created, a UMID
with a newly created Mat.# and a zero Inst.# values must be cre-
ated and attached to the material (Fig. 5 (a)).

■	 Principle 3: UMID Integrity

	 This principle specifies that different materials must be globally
uniquely identified by different UMIDs.

■	 Principle 4: UMID Identification

	 This principle specifies if more than one material is uniquely
identified by a single UMID, their representations at playout
must be identical bit by bit on the time line. In other words, what
a UMID uniquely identifies is not a media file, but a baseband bit
stream at its playout in a strict sense according to this principle.

■	 Principle 5: UMID Inheritance

	 This principle denotes that an instance derived from original
material can be attached with the UMID of the Mat.# being in-
herited from that of the original material and an Inst.# set to a
nonzero value (Fig. 5 (b)).

■	 Principle 6: Extended UMID

	 This principle recommends that the extended UMIDs attached
to the material units within the material share the same basic
UMID that uniquely identifies the material as a whole (Fig. 4).

■	 Principle 7: Source Pack

	 This principle recommends that the source pack in the extended
UMID, once created, not be replaced with a new one, so that the
source pack attached at an initial material creation will be pre-
served throughout the processes of the media production work-
flow chain.

MXF OVERVIEW

What is the MXF?
Structure of an MXF File

An overview of MXF technology is briefly introduced here, starting
with the structure of an MXF file. While MXF has elaborate file
format specifications, only those needed in the following discus-
sions are described. Hence, readers desiring a full knowledge of the
MXF specifications are directed to the relevant SMPTE standards4
and/or literature.9

MXF is a container format in the sense that an MXF file may con-
tain any kind of audiovisual essence(s) as well as metadata such as
time code and titles.

An MXF file, in its physical representation, is composed of a se-
quence of SMPTE key-length-value (KLV) coded chunks of data

Figure 8. Structure of an MXF file.

Header
Partition

Pack	

Essence Container	
Header

Metadata	

Footer

Partition
Pack	

Header
Metadata	

File Header	
 File Body	
 File Footer	

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

UMID Applications in MXF and Streaming Media continued

6 // SMPTE Motion Imaging Journal	 January/February 2016

(hereafter called KLV packet),10 which logically form a file header,
starting with a header partition pack, and a file footer, starting with
footer partition pack, and the file body placed between them, as
shown in Fig. 8.

In a typical MXF file, the essence is individually KLV wrapped to
form an essence container, and it is stored in the file body. The
granularity of the essence data to be KLV wrapped varies depending
on the type of MXF file, ranging from per frame (frame wrapped) to
an entire clip (clip wrapped). In the case of the frame-wrapped es-
sence, metadata associated with a frame such as time code are also
attached to the KLV packet containing the frame.

Structural and Descriptive Metadata

Metadata associated with an MXF file are called MXF header meta-
data and contained in the file header and additionally in the file
footer if desired. Two kinds of header metadata are defined in MXF:
structural metadata and descriptive metadata.

The structural metadata describes one or more essence types and
their relationship along a time line at their playout. The structur-
al metadata is mandatory because it describes how to playout the
essence(s) by specifying their synchronization and technical param-
eters such as the frame rate. Consequently, modification of structural
metadata has a strong impact on the playout of an MXF file.

The descriptive metadata provides information mainly for human
use, such as a title and content synopsis. While it is important for
an efficient material search, it is not mandatory in the sense that
an MXF file can be played out without the descriptive metadata.
Hence, we will not go into more details about it in this paper.

Logical Structure of MXF Header Metadata

The MXF header metadata content by itself is also a sequence of
the KLV packets, but they logically form a tree structure by con-
necting them via a so-called “strong reference.” Figure 9 shows a
simplified logical structure of the MXF header metadata (the struc-
tural metadata).

In Fig. 9, the preface as a root of the MXF header metadata signals
the kind of MXF file, such as a type of MXF operational pattern
(OP), and the types of essence container, including essence kinds
contained in the MXF file.

Below the preface are the identification and the content storage.
The identification describes the media product used to produce
the MXF file and when, and the content storage contains three
fundamental metadata items, the essence container data, the mate-
rial package (MP), and the file package (FP) (also called, top-level
source package).

The essence container data describes the individual essence con-
tainer in the file body. Theoretically, an MXF file is permitted to
contain more than one type of essence, such as the high-resolution
picture essence and its proxy, each of which is stored in a specific
essence container, which is then described by the essence container
data, including the FP associated with the essence container.

According to SMPTE ST 377-1,4 the MP and FP are specified to
describe the essence on a time line at the playout of an MXF file
(called “the output time line”) and a time line for the essence
stored in an essence container (called “the input time line”), re-
spectively. In fact, this is one of the most characteristic parts of the
MXF technology, and it is also vital for the UMID applications in
MXF as to be discussed later.

MXF Internal Behavior Model
MXF with a Dual-Layered Structure

Among other valuable characteristics of the MXF technology, its
dual-layered structure is one of the most distinguishing character-
istics of MXF. In short, what is to be produced to output at the
playout of an MXF file is not always the same as what is contained
in the MXF file, as shown in Fig. 10, which schematically demon-
strates that only the middle part of the essence specified by the in/
out points in the file body (the essence container) of an MXF file is
produced to output at its playout.

The FP and MP describe the input and output time lines, respec-
tively. More specifically, the FP attaches a time line to a sequence of
chunks of essence data in the essence container, while the MP spec-
ifies how they are to be placed on the time line at the playout. As a
result, though the input time line can contain discontinuity (e.g.,
for the composite essence container), the output time line must
be always contiguous, while both are represented using time code.

Preface	

Identification	

Content Storage	

Essence Container Data	

File Package (FP)	

Material Package (MP)	

Figure 9. Logical structure of MXF Header Metadata.

File Header	
 File Body	
 File
Footer	

Internal Essence	

In	
 Out	

Playout	
 Output Essence	

.mxf	

Describe timeline	

Figure 10. An MXF file at playout.

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

January/February 2016	 SMPTE Motion Imaging Journal // 7

MXF Internal Behavior at Playout

Another interesting point to be noted is that although the internal
essence in the file body can take various forms, from those based
on a variety of compression schemes to an uncompressed one, the
output essence resulting from the playout is always the baseband
signal we can directly perceive (via devices such as a video monitor
or the sound speakers, of course).

Taking the roles of the MP and the FP into consideration, the MXF
internal behavior that would occur at the playout of an MXF file is
schematically demonstrated in Fig. 11.

Based on Fig. 11, the MXF internal behavior model is described
as follows: the essence data, encoded by a certain compression
scheme and stored in the essence container, are fetched and de-
coded by the FP. After the synchronization, if more than one type of
essence data is decoded, the FP supplies the baseband essence flow
to the MP, which is then switched by the MP so that only the part
specified by the in/out points is produced to output.

Because of such roles of the MP and FP, the following features are
observed:

■	 The FP describes not only the temporal information of an es-
sence container, but also technical properties of the essence data
stored in it such as the codec, the sampling rate (frame rate), a
frame size, and so on, by using so-called file descriptor, so that it
can provide the internal essence flow as a baseband signal.

■	 The MP describes not only the temporal information of an es-
sence at playout, but also the switching information for it so that
it can control the essence flow to be actually produced to output.
No file descriptor is attached to the MP because it receives the
(already decoded) baseband signal from the FP as input.

Note that the baseband essence flow supplied by the FP to the MP
is imperceptive and thus cannot be accessed from an external ap-
plication because it is just a conceptual essence flow derived, based
on the MXF internal behavior model.

Figure 12. MXF Package UID’s (MpUmid an FpUmid).

Figure 11. MXF internal behavior model at playout.

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

UMID Applications in MXF and Streaming Media continued

8 // SMPTE Motion Imaging Journal	 January/February 2016

UMID APPLICATIONS IN MXF

UMIDs in an MXF File
Material Package UID (MpUmid) and File Package UID
(FpUmid)

According to SMPTE ST 377-1,4 the basic UMID is used as a unique
identifier (UID) of the package that describes the essence on a time
line. While the package UID is originally introduced to uniquely
identify a package instance within an MXF file by definition, it is
also considered to uniquely identify the essence flow the package
supplies based on the MXF internal behavior model. Figure 12 re-
produces the MXF internal behavior model with the package UIDs
being attached to the MP and the FP.

In the following, let MpUmid and FpUmid denote the pack-
age UIDs attached to the MP and FP, respectively. As a result, the
MpUmid uniquely identifies the essence flow to output, which we
can perceive when an MXF file is played out, while the FpUmid
uniquely identifies the imperceptive baseband essence flow that the
FP with it supplies to the MP, as shown in Fig. 12.

Body UMID (BodyUmid)

In addition to the package UIDs, there is another kind of UMID in
an MXF file called body UMID. Specifically, it is either the basic or
the extended UMID associated with a frame (or a group of frames if
desired) and inserted into the MXF file body via the so-called MXF
generic container11 as an essence container. Figure 13 schemati-
cally illustrates an example of the detailed structure of the MXF
generic container containing the body UMIDs.

As shown in Fig. 13, the file body is composed of a sequence of so-
called edit units, which are on per frame basis in this case. An edit
unit for a frame is then composed of the system item, the picture
item containing picture essence data per frame, the sound items
containing sound data synchronized with the frame, and finally
the data item for the frame, and it is the system item that stores
the body UMID as indicated by the red circle in Fig. 13,12 which is
denoted as BodyUmid hereafter.

Applications of MpUmid (Material Package UID)
What Does the MpUmid Identify?

While the originally expected role of the MpUmid is a unique iden-
tifier of an instance of the MP within an MXF file, it is also consid-
ered to uniquely identify the baseband essence flow produced to
output at the playout of an MXF file (i.e., what we actually observe
when the MXF file is to be played out).

According to the UAP 4 (UMID Identification), it is a representa-
tion of the material at its playout, which a UMID uniquely identi-
fies in a strict sense. Therefore, it is the MpUmid, which uniquely
identifies the material that is stored in the form of an MXF file.

It is worthwhile to note that in many cases, the MpUmid is also re-
garded as a unique identifier of an MXF file, but this is not always true.

In fact, there exists a complicated MXF file that can produce more
than one type of baseband essence flow at its playout by containing
multiple MPs, each of which corresponds to an individual base-
band essence flow. Because each MP, and thus the baseband essence
flow it produces, has its own MpUmid, a single MXF file can be
uniquely identified by more than one MpUmid in this case.

Figure 13. MXF Generic Container in file body.

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

January/February 2016	 SMPTE Motion Imaging Journal // 9

Furthermore, there is a case where multiple MXF files are uniquely
identified by a single MpUmid. Because multiple media files can share
a single UMID when they produce an identical result at their play-
out according to the UAP 4 (UMID Identification), a single MpUmid
uniquely identifies multiple clones of an MXF file all at once, though
they can be distinguished by different MpUmid if desired.

MpUmid as a Globally Unique Material Identifier

Because of the MpUmid uniquely identifying a material as an MXF
file in general, the most important application of the MpUmid is its
use as a globally unique material identifier, which corresponds to
“U

A
” and “U

B
” in Fig. 6.

Since the UMID as a globally unique material identifier is its pri-
mary use, a comprehensive discussion is given in the latest SMPTE
RP 205,2 in which the most important concept is the UMID man-
aged domain that MXF files with the MpUmid need to constitute.

The UMID managed domain is a conceptual domain composed of
materials with valid UMIDs in the sense of UAPs 2 to 4 (UMID
Creation, Integrity, and Identification), which are applied to the
UMID as a globally unique material identifier.

In order for the MpUmid in the UMID managed domain to be al-
ways maintained valid in the sense of those UAPs, certain MpUmid
treatments are always required at every manipulation of an MXF
file in the domain. These are executed by the material manager.

The material manager is not only a tool responsible for manage-
ment of MXF files, but it also maintains the integrity of MpUm-
ids assigned to them in the UMID managed domain. In addition,
because an MpUmid by itself tells nothing about where to access
a desired MXF file identified by the MpUmid, the material man-
ager is also expected to maintain the correspondence between the
MpUmid and a URL of the MXF file by using a mapping list.

While the detailed MpUmid treatments for various manipulations
of an MXF file are described in the Standard Committee Report,7
some treatments are worth mentioning here.

For New MXF File Creation in the UMID Managed
Domain

When a new MXF file is created from scratch by, for example, the
camera acquisition, in the domain, the material manager assigns
a newly created MpUmid (composed of newly created Mat.# and
zero Inst.# values) to the MXF file, and it registers the pair of the
MpUmid and the file’s URL to the mapping list.

For a New MXF File Import into the UMID Managed
Domain

When an MXF file existing elsewhere is imported into the domain,
the material manager usually replaces the MpUmid of the incom-
ing MXF file with a newly created UMID value (and registers the
pair of the new MpUmid and the file’s URL to the mapping list)
because it cannot trust the validity of the MpUmid of an incoming
MXF file in general.

An exception occurs when the location from which an MXF file
is to be imported is also known as a UMID managed domain in

advance. Because the MpUmid in this case is valid by definition,
it can be reused when the MXF file is imported into the domain
exactly as is according to UAP 4 (UMID Identification).

For an Existing MXF File Modification at its Essence in
the UMID Managed Domain

When an MXF file existing in the domain is modified at its es-
sence by, for example, insert editing, the material manager usually
finds the MpUmid of the MXF file, replaces it with a newly created
UMID value, and reflects the change in the mapping list.

This MpUmid replacement is required because the existence of
identical MXF files sharing the same MpUmid elsewhere is un-
known, which could otherwise lead to a breach of UAP 3 (UMID
Integrity).

An exception is given in a special case when the modification
causes no change to the playout result of an MXF file at all, such as
a mathematically lossless picture encoding, because of the UAP 4
(UMID Identification).

Applications of FpUmid (File Package UID)
What Does the FpUmid Identify?

While the originally expected role of the FpUmid was as a unique
identifier of an instance of the FP within an MXF file, it is also
considered to uniquely identify the internal baseband essence flow
supplied to the MP by the FP with the FpUmid.

Unlike the MpUmid, the global usefulness of FpUmid is insignifi-
cant because the internal baseband essence flow supplied by the FP
is just a conceptual entity that no external application can access.

On the other hand, the uniqueness of FpUmid within an MXF
file is crucial because the MP needs to unambiguously specify the
FP(s) from which the internal baseband essence flow(s) is supplied
by using its FpUmid (via so-called “source clip”).

FpUmid as a Linking Tool

Although the FpUmid is also used as a globally unique material
identifier, its usefulness is very limited, as discussed in the Stan-
dard Committee Report.7 Taking account of the scope of unique-
ness of the FpUmid within an MXF file, the use of FpUmid as a
linking tool further enhances its usefulness.

Figure 14 schematically demonstrates such a use of the FpUmid,
where an originally created MXF file called “Original Material.mxf”
is partially retrieved, with its in/out points being specified to create
a derived MXF file called “Derived Material.mxf.”

When “Original Material.mxf” is created, its MpUmid (“U
1
”) is new-

ly created with its newly created Mat.# of “FE
h
 DC

h
 BA

h
 ... 32

h
 10

h
”

and zero Inst.# values, so that the MXF file is independently man-
aged by using its MpUmid as a globally unique material identifier.

Because “Derived Material.mxf” is also a newly created MXF file to
be managed independently, its MpUmid as a globally unique mate-
rial identifier (“U

3
”) is also newly created with a different Mat.#

value (“98
h
 76

h
 54

h
 ... AB

h
 CD

h
”).

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

UMID Applications in MXF and Streaming Media continued

10 // SMPTE Motion Imaging Journal	 January/February 2016

When the FpUmid is employed as a linking tool, there is a way
for the FpUmid of “Derived Material.mxf” (“U1”) to be created
based on the MpUmid of “Original Material.mxf”; the Mat.# of
the FpUmid inherits the value “FE

h
 DC

h
 BA

h
 ... 32

h
 10

h
” from the

MpUmid of “Original Material.mxf,” and its Inst.# is set to a non-
zero value (“01

h
 98

h
 76

h
”) in the case of Fig. 14.

This kind of FpUmid treatment brings additional usefulness for the
FpUmid. As it is obvious in the figure, the resolution of FpUmid of
“Derived Material.mxf” with its Inst.# masked to zero will lead to the
URL of “Original Material.mxf.” In other words, thanks to the FpUm-
id as a linking tool, a source MXF file from which a derived MXF file
is created is easily obtained by using the UMID Resolution Protocol.

Note that while the partial retrieval is taken for example in this
case, this use of FpUmid is applicable to any kind of media process-
ing that treats an MXF file as input and output, such as transcod-
ing, a text overlay, and so on.

Applications of BodyUmid (Body UMID)
What Does the BodyUmid Identify?

As shown in Fig. 4, the BodyUmid as an extended UMID globally
uniquely identifies a material unit by definition. This is valid when
its basic part is a globally unique material identifier with a newly
created Mat.# and zero Inst.# values. However, what happens to the
BodyUmid when its basic part is a linking tool (the inherited Mat.#
and nonzero Inst.# values)?

According to UAP 6 (Extended UMID), the basic part of BodyUmid
in an originally created MXF file is equivalent with the MpUmid
globally uniquely identifying the MXF file as a whole. It is therefore
logically expected that when the basic part of the BodyUmid at-
tached to a material unit as a linking tool is resolved with its Inst.#
masked to zero by using the UMID Resolution Protocol, the URL
of the original MXF file from which this material unit derives in
any way is obtained.

More specifically, there should exist a material unit for which the
BodyUmid shares the Mat.# but has zero Inst.# values in the origi-
nal MXF file, from which the material unit in question derives,

though the source pack is required to determine the exact position
of the material unit in the original MXF file.

BodyUmid Applications for an Original MXF File
Creation from a Live Feed

While the material unit is defined as a quantum duration of mate-
rial such as a frame, it is also regarded as the quantum duration,
the sequencing of which forms a media stream. In both cases, each
quantum duration is uniquely identified by the extended UMID.

Figure 15 schematically demonstrates an original MXF file cre-
ation by capturing a live feed from a camera as a media stream. The
media stream generated by the camera is composed of a sequence
of frames as the material units, and the extended UMID is attached
to each frame for its own unique identification in the stream.

Thanks to the source pack in the extended UMID, the information
on “when,” “where,” and “who” creates each frame, which is also
automatically generated by the camera typically using an internal
clock, a global positioning system (GPS) unit, and the system pre-
set values, respectively, is attached to the frame.

An MXF recorder that receives the media stream creates an origi-
nal MXF file. More specifically, after the file header creation, the
MXF recorder receives incoming frames as the material units and
stores them as the edit units with newly created BodyUmid being
assigned to each edit unit during the file body creation.

In Fig. 15, when a new frame is created by a camera, a newly cre-
ated extended UMID (“U

p
S

i
”) is attached to the frame, in which its

basic part (“U
p
”) is a constant value specific to the camera, and its

source pack (“S
i
”) is newly created specifically for the frame. Note

that the bottom nibble of byte 12 in the extended UMID is set to
“F

h
” to signal the “live stream,” or it indicates that a frame with the

UMID has never been recorded to form a persistent material so far,
while its top nibble of “1

h
” indicates the “SMPTE method” used to

create the Mat.# value.1

Because an original MXF file created by the MXF recorder is man-
aged independently, its MpUmid (“U

1
”) is newly created with a

new Mat.# (“1xx”) and zero Inst.# values. Its FpUmid (“U
p
”) is

created by inheriting the Mat.# value in the basic part of the ex-

Figure 14. FpUmid application for partial retrieval of an MXF OP1a file.

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

January/February 2016	 SMPTE Motion Imaging Journal // 11

tended UMID attached to every frame (“pxx”) in the incoming me-
dia stream and using nonzero Inst.# values (“1”).

As for the BodyUmid assigned to an edit unit in the original MXF
file, based on the UAPs 6 (Extended UMID) and 7 (Sources Pack),
the basic part of the BodyUmid is aligned with the MpUmid value
(“U

1
”), while the source pack of BodyUmid (“S

i
”) is created by in-

heriting the source pack of extended UMID attached to the incom-
ing frame exactly as is.

Note that the bottom nibble of byte 12 in the BodyUmid is reset
from “F

h
” to “3

h
” to indicate the “copy number and 16 bit pseudo-

random sequence (PRS) generator” method for the Inst.# gener-
ation1 (insignificant for a newly created UMID with zero Inst.#
value, though) because the edit unit was recorded as a part of per-
sistent material as the MXF file.

BodyUmid Applications for an Existing MXF File
Playout and Another MXF File Creation

Figure 16 schematically demonstrates another MXF file creation
by capturing a media stream over the serial digital interface (SDI),
which is generated by the playout of the original MXF file shown
in Fig. 15.

For the MXF file playout, each edit unit in the original MXF file,
usually stored in a compressed fashion, is decoded to the baseband
signal and emitted to the SDI as a frame. The BodyUmid stored
beside the edit unit is also read and embedded exactly as is into the
vertical ancillary (VANC) data space of the frame (as the extended
UMID attached to it) in the media stream over the SDI.

Another MXF recorder that receives the media stream over the SDI
creates a new MXF file. More specifically, after the file header cre-
ation, the MXF recorder receives incoming frames of the baseband
signal as the material units, makes them lossy compressed, and
stores them as the edit units with newly created BodyUmids during
the file body creation.

Because the new MXF file created by another MXF recorder is also
managed independently, its MpUmid (“U

3
”) is newly created with

another new Mat.# (“3xx”) and zero Inst.# values. Following the

discussion in Fig. 14, its FpUmid (“U
1
”) is created by inheriting

the Mat.# value in the MpUmid of the original MXF file (“1xx”)
and using a newly created nonzero Inst.# value (“1”).

The BodyUmid in the new MXF file is created in a different way
from that of the original MXF file shown in Fig. 15. Instead of
aligning with its MpUmid value, the basic part of BodyUmid is cre-
ated by inheriting the Mat.# value of the basic part in the extended
UMID attached to an incoming frame (“1xx”) and using a newly
created nonzero Inst.# value (“1”), while the source pack of the
BodyUmid (“S

i
”) is created in the same way as that in Fig. 15.

This BodyUmid creation strategy is based on UAPs 5 (UMID In-
heritance) and 7 (Source Pack), which are also valid because of the
lossy compression, which makes the edit unit stored in the new
MXF file a derived material from a frame of the baseband signal in
the incoming media stream.

Note that this BodyUmid creation strategy is more useful, especial-
ly for derived MXF file creation. If this strategy is applied not only
to an MXF file derived directly from an original MXF file (the first
generation), but also to any other derived MXF files from another
derived MXF file (the Nth generation), their BodyUmids always
inherit the Mat.# of the MpUmid of the original MXF file from
which the edit unit derives directly or indirectly. As a result, when
an edit unit with the BodyUmid in any MXF file in the media pro-
duction workflow chain is obtained, the URL of the original MXF
file from which the edit unit derives can be accessed via resolving
the basic part of BodyUmid with its Inst.# masked to zero by using
the UMID Resolution Protocol.

In addition, this function is further enhanced when the nonzero
Inst.# value is created by using the aforementioned “copy number
and 16-bit PRS generator” method,1 which is indicated by the bot-
tom nibble of byte 12 in the BodyUmid as “3

h
.” According to this

Inst.# generation method, the 3 byte Inst.# value is composed of a
1 byte copy number, which actually indicates the generation num-
ber since the material is original, and a 2 byte random value.

Therefore, if this Inst.# generation method is adopted by all me-
dia products over the media production workflow chain, and the

Figure 15. An original MXF file creation from a live feed.

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

UMID Applications in MXF and Streaming Media continued

12 // SMPTE Motion Imaging Journal	 January/February 2016

copy number is employed by them appropriately, it is expected that
the quality of the finished program can be evaluated on a frame
basis, and, when the quality of certain parts of the program does
not satisfy the quality requirements, the original materials used to
produce those parts can be easily obtained via the BodyUmid reso-
lution in order to reproduce the parts in a higher quality.

Source Pack Applications

The source pack in the extended UMID, and so the BodyUmid in
an MXF file, is a compact placeholder to accommodate the infor-
mation on “when,” “where,” and “who” originally created each
frame. Because the source packs synchronize with frames, they are
also played back together with the frames. Figure 17 shows an ex-
ample of such a playback result where a media stream generated by
the MXF player in Fig. 16 (or a live feed generated by the camera
in Fig. 15) is displayed on a video monitor.

In Fig. 17, the media stream resulting from the playout of mate-
rial that captures a seaside scene during a typhoon is displayed,
with the date/time (“when”) and place (“where”) information for
its acquisition being superimposed over the image. Because the
source pack varies with frames, the superimposed information is
also continuously updated during the playout of the material if it
is also played back.

Another source pack application is its use for material classification
and/or search, as shown in Fig. 7. Unlike the metadata shown in
Fig. 6, the source pack is created automatically without any hu-
man intervention. This characteristic of the source pack is helpful,
particularly when a large number of materials are created almost
simultaneously, such as in a large-scale disaster, where even con-
sumer electronics (CE) devices such as smartphones play an im-
portant role for material acquisition.

In fact, the source pack was introduced in the initial stage of UMID
development in 2000, and a trial was made for its use even in a
traditional VTR/SDI-based media production environment.13 With
material as a physical entity (video tape) in the traditional envi-
ronment, the usability of the source pack was very much limited,
though.

Now, the file-based environment where any material is available
online has become a reality, and, with the provision of standard
methods for source pack transfer (in the extended UMID on the
wire) and its recording (in the BodyUmid), as well as the world-
wide map information available today, it is just a matter of time
for the source pack (especially the GPS information in it) to be
proactively utilized for professional use in a similar way to the CE
applications on mobile devices.

UMID APPLICATIONS IN MXF AND STREAMING MEDIA

UMID Applications in Streaming Media
While the extended UMID can be seamlessly used over an MXF file
and a media stream resulting from the playout of an MXF file as
shown in Fig. 16, it can also be effectively utilized even only within
the world of streaming media, especially when the copy number in
the Inst.# field is employed based on the “copy number and 16-bit
PRS generator” method1 to generate a value for the field.

The copy number was originally introduced for the number of rep-
etitions of lossy compression and decompression caused by tape
dubbing in the traditional VTR/SDI environment. In the file-based
environment, it is similarly used to indicate the file’s generation
number from the original, as Fig. 16 depicts.

Figure 16. A new MXF file creation from a playout of an existing MXF file.

Figure 17. Material playback with the source pack.

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

January/February 2016	 SMPTE Motion Imaging Journal // 13

For streaming media, the copy number is further generalized to
indicate the number of media processing steps applied to an edit
unit since its origin. Figure 18 schematically demonstrates such
an example where two cameras (“Camera 1” and “Camera 2”) gen-
erate their respective live feeds as media streams, which are then
switched over by a production switcher (“Switcher”) to form a
single media stream.

In this example, an image processor (“Image Processor”) applies
image processing such as color grading to the media stream from
“Camera 1” before switching, and the “Switcher” applies a transi-
tion effect such as a wipe to the switching point of the incoming
two streams over two frames as well as applying an image overlay
such as a corporate logo to all frames to output.

As shown in Fig. 18, the extended UMID is attached to every frame
as the material unit, the sequencing of which forms a media stream.
A frame newly created by a camera is attached with a newly created
extended UMID having a newly created Mat.# (“pxx” and “qxx” by
“Camera 1” and “Camera 2,” respectively) and zero Inst.# values
(ditto “U

p
” and “U

q
”) together with a newly created source pack

(“S
i
”).

Assuming the “copy number and 16-bit PRS generator” method for
the generation of nonzero Inst.# values, the copy number in the
Inst.# field of the extended UMID attached to a frame is employed
so that it is incremented by one when certain media processing is
applied to the frame.

As a result, the extended UMID attached to a frame input to the
“Image Processor” is replaced with that for which the Inst.# value is
set to “01

h
 xx

h
 yy

h
” (the copy number “01

h
” immediately followed

by the PRS value “xx
h
 yy

h
”), as is simply represented by “Inst.# =

“1” ” in Fig. 18. In addition, because of the image overlay applied
by the “Switcher,” all the frames the switcher outputs are attached
with the extended UMID for which the copy number is “2” and “1”
for the frame input from “Camera 1” and “Camera 2,” respectively.

As for the composite frames in the transition effect region, a frame
in the region is considered as a derived one from the input frame
that contributes to the composition most. Therefore, the right and
left frames in the region in Fig. 18 are considered as ones derived
from a frame by “Camera 1” and “Camera 2,” respectively, though
the frame composition and the image overlay applied to those
frames are regarded as a single media processing step.

Note that because none of the frame is recorded to form a persis-
tent material in Fig. 18, all the extended UMIDs attached to the
frames have the UMID “live stream” flag, or the bottom nibble of
their byte 12 is set to “F

h
.” In fact, this nibble is also used to indi-

cate the Inst.# generation method, which should have been set to
“3

h
” for this case. However, the UMID “live stream” flag prevails

because the recorded material can coexist in a system without any
problem when a device in the system has a recording capability,
which should be distinguished by a higher priority than the Inst.#
generation method.

Consequently, the copy number in the Inst.# field is also employed
effectively even only within the world of streaming media when the
“copy number and 16-bit PRS generator” method is adopted for the
Inst.# value to be generated by all media products, which is useful to
optimize the system configuration for the quality of streaming media.

Proposed Guidelines for Interoperability
Because of the wide range and high flexibility of MXF technol-
ogy, some guidelines to restrict its use are often required to maxi-
mize the interoperability, and the UMID applications in MXF and
streaming media are no exception.

In the following, the assumptions for the UMID applications dis-
cussed so far are itemized, which will be the starting point for the
guideline study to obtain better interoperability for them.

■	 A newly created MpUmid is assigned to a newly created MXF file
(UAP 2).

Figure 18. Extended UMID applications for streaming media.

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

UMID Applications in MXF and Streaming Media continued

14 // SMPTE Motion Imaging Journal	 January/February 2016

■	 The MpUmid is appropriately managed to be a globally unique
material identifier (UAP 3).

■	 Clone MXF files share a single MpUmid (UAP 4).

■	 The FpUmid is used as a linking tool back to the source MXF file
(UAP 5).

■	 The basic part of BodyUmid aligns with the MpUmid for an orig-
inal MXF file creation (UAP 6).

■	 The source pack is always inherited regardless of the creation
method of the basic part of an extended UMID and regardless of
whether it is used for an MXF file or a media stream (UAP 7).

■	 The edit unit assigned with the BodyUmid in an MXF file cor-
responds to the material unit attached with the extended UMID
on the wire one by one, which is a frame.

■	 The “copy number and 16-bit PRS generator” method, indicated
by the bottom nibble of byte 12 as “3

h
,” is always applied for the

nonzero Inst.# generation regardless of whether it is for an MXF
file or a media stream.

■	 The UMID “live stream” flag (“F
h
”) prevails against the Inst.#

generation method (“3
h
”) for the bottom nibble of byte 12 in the

case of a media stream before recording.

CONCLUSION
In this paper, plausible UMID applications in an MXF file and a
media stream are discussed, based on the UMID Application Prin-
ciples recently standardized by SMPTE.

It was found that neither new invention nor extension is required
for the MXF technology to enable those UMID applications. With
the wide range and high flexibility of the technology, however,
some guidelines to restrict its use need to be established to maxi-
mize the interoperability.

This paper constitutes a digest version of the SMPTE Standard
Committee Report on this topic available online,7 which is a deliv-
erable of the UMID Application Project (SMPTE TC-30MR Study
Group UMID Applications). Because that report contains more
comprehensive discussions on this topic, those interested in this
paper are kindly requested also to review the report and to provide
the project members with any feedback in order for the dream en-
visioned by the EBU/SMPTE Task Force to be fully realized.

REFERENCES
1.	 SMPTE ST 330:2011, “Television—Unique Material Identifier

(UMID),” https://www.smpte.org/standards.

2.	 SMPTE RP 205:2014, “Application of Unique Material Identifiers
in Production and Broadcast Environments,” https://www.smpte.
org/standards.

3.	 EBU Technical Review Special Supplement 1998, “EBU/SMPTE Task
Force for Harmonized Standards for the Exchange of Programme
Material as Bitstreams, Final Report: Analyses and Results,” http://
tech.ebu.ch/docs/techreview/ebu-smpte-tf-bitstreams.pdf.

4.	 SMPTE ST 377-1:2011, “Material Exchange Format (MXF)—File
Format Specification,” https://www.smpte.org/standards.

5.	 Y. Shibata and J. Wilkinson, “UMID Applications in Practices,” SMPTE
Mot. Imag. J., 121(2):58-67, Mar. 2012.

6.	 SMPTE TC-30MR SG UMID Applications, https://kws.smpte.org/
kws/public/projects/project/details?project_id=90.

7.	 SMPTE TC-30MR Study Group Report, “Study of UMID Applica-
tions in MXF and Streaming Media,” available at https://www.
smpte.org/standards/reports.

8.	 SMPTE RP 210v13:2012, “Metadata Element Dictionary,” https://
www.smpte.org/standards.

9.	 N. Wells, O. Morgan, J. Wilkinson, and B. Devlin, The MXF Book, Focal
Press: Burlington, MA, May 2006.

10.	 SMPTE ST 336:2007, “Data Encoding Protocol Using Key-Length-
Value,” https://www.smpte.org/standards.

11.	 SMPTE ST 379:2009, “Material Exchange Format (MXF)—MXF
Generic Container,” https://www.smpte.org/standards.

12.	 SMPTE ST 385:2012, “Material Exchange Format (MXF)—Mapping
SDTI-CP Essence and Metadata into the MXF Generic Container,”
https://www.smpte.org/standards.

13.	 For example, the optional GPS unit (HKDW-704) for the Sony
HDCAMTM Camcorder (HDW-730).

A contribution received from the author, October 2015. Copyright © 2016
by SMPTE.

Yoshiaki Shibata is a chair of SMPTE TC-30MR Study Group (SG) UMID Applications. In 2001 Shibata met the UMID
for the first time at Sony Corp. Since then, he was heavily involved and played a crucial role in the development and
implementation of the UMID applications, initially for the traditional professional VTRs (HDCAMTM) and then for the modern
file-based media products (XDCAMTM), during which he was fascinated by the potential key roles of UMID in the future file-
based media production environment. At the end of 2010, Shibata left Sony, and later, founded metaFrontier.jp, LLC, Japan’s
first independent consulting firm specifically for the media and metadata technology. With his well-received presentation
at the SMPTE 2011 Annual Technical Conference, regarding the challenges and solutions to realize an ever-envisioned UMID
application in practice as a trigger, Shibata joined the SMPTE Standard Community and established the SG under TC-30MR
in 2012. So far, the SG has already standardized the UMID Application Principles as the latest RP 205 for which Shibata is
awarded by the ITE (The Institute of Image Information and Television Engineers, Japan), has successfully developed the
UMID Resolution Protocol, which is now under SMPTE standardization, and has intensively explored the promising UMID
applications specifically for the MXF technology whose deliverable is now made available online. Shibata is a member of
SMPTE, ITE, and MPTE (Motion Picture and Television Engineering Society of Japan).

Authorized licensed use limited to: Yoshiaki SHibata. Downloaded on February 18,2016 at 15:47:43 UTC from IEEE Xplore. Restrictions apply.

